Global Substrate Profiling of Proteases in Human Neutrophil Extracellular Traps Reveals Consensus Motif Predominantly Contributed by Elastase
نویسندگان
چکیده
Neutrophil extracellular traps (NETs) consist of antimicrobial molecules embedded in a web of extracellular DNA. Formation of NETs is considered to be a defense mechanism utilized by neutrophils to ensnare and kill invading pathogens, and has been recently termed NETosis. Neutrophils can be stimulated to undergo NETosis ex vivo, and are predicted to contain high levels of serine proteases, such as neutrophil elastase (NE), cathepsin G (CG) and proteinase 3 (PR3). Serine proteases are important effectors of neutrophil-mediated immunity, which function directly by degrading pathogenic virulent factors and indirectly via proteolytic activation or deactivation of cytokines, chemokines and receptors. In this study, we utilized a diverse and unbiased peptide library to detect and profile protease activity associated with NETs induced by phorbol-12-myristate-13-acetate (PMA). We obtained a "proteolytic signature" from NETs derived from healthy donor neutrophils and used proteomics to assist in the identification of the source of this proteolytic activity. In addition, we profiled each neutrophil serine protease and included the newly identified enzyme, neutrophil serine protease 4 (NSP4). Each enzyme had overlapping yet distinct endopeptidase activities and often cleaved at unique sites within the same peptide substrate. The dominant proteolytic activity in NETs was attributed to NE; however, cleavage sites corresponding to CG and PR3 activity were evident. When NE was immunodepleted, the remaining activity was attributed to CG and to a lesser extent PR3 and NSP4. Our results suggest that blocking NE activity would abrogate the major protease activity associated with NETs. In addition, the newly identified substrate specificity signatures will guide the design of more specific probes and inhibitors that target NET-associated proteases.
منابع مشابه
Proteomic Characterization of Middle Ear Fluid Confirms Neutrophil Extracellular Traps as a Predominant Innate Immune Response in Chronic Otitis Media.
BACKGROUND Chronic Otitis Media (COM) is characterized by middle ear effusion (MEE) and conductive hearing loss. MEE reflect mucus hypersecretion, but global proteomic profiling of the mucosal components are limited. OBJECTIVE This study aimed at characterizing the proteome of MEEs from children with COM with the goal of elucidating important innate immune responses. METHOD MEEs were collec...
متن کاملNeutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps
Neutrophils release decondensed chromatin termed neutrophil extracellular traps (NETs) to trap and kill pathogens extracellularly. Reactive oxygen species are required to initiate NET formation but the downstream molecular mechanism is unknown. We show that upon activation, neutrophil elastase (NE) escapes from azurophilic granules and translocates to the nucleus, where it partially degrades sp...
متن کاملNeutrophil Proteases Promote Experimental Abdominal Aortic Aneurysm via Extracellular Trap Release and Plasmacytoid Dendritic Cell Activation.
OBJECTIVE We previously established that neutrophil-derived dipeptidyl peptidase I (DPPI) is essential for experimental abdominal aortic aneurysm (AAA) development. Because DPPI activates several neutrophil serine proteases, it remains to be determined whether the AAA-promoting effect of DPPI is mediated by neutrophil serine proteases. APPROACH AND RESULTS Using an elastase-induced AAA model,...
متن کاملDesign of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling.
The exploration of protease substrate specificity is generally restricted to naturally occurring amino acids, limiting the degree of conformational space that can be surveyed. We substantially enhanced this by incorporating 102 unnatural amino acids to explore the S1-S4 pockets of human neutrophil elastase. This approach provides hybrid natural and unnatural amino acid sequences, and thus we te...
متن کاملPapillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses.
Papillon-Lefèvre syndrome (PLS) results from mutations that inactivate cysteine protease cathepsin C (CTSC), which processes a variety of serine proteases considered essential for antimicrobial defense. Despite serine protease-deficient immune cell populations, PLS patients do not exhibit marked immunodeficiency. Here, we characterized a 24-year-old woman who had suffered from severe juvenile p...
متن کامل